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Lecture Notes on Statistical Methods 
(by Tom Co 9/23/2007, 10/15/2007) 

 
 
Charateristics of a Good Engineering Experiment 
 

1. Necessity. 
 a) objective is well formulated 
 b) economical 
 c) results are needed for decision, understanding and process improvement 
 
2. Scope. 
 a) significant variables are tested within important range 
 b) (boundary and initial) conditions are properly set up 
 c) results are representative of general case, e.g. scalable 
 
3. Reproducibility and Statistical Significance 
 a) enough trials need to be taken to assess confidence 
 b) results must be reproducible for accuracy and precision of prediction 
 
4. Realization 
 a) results can be applied to real process or system 
 b) data are relevant to the real problem 
 
5. Analysis 
 a) statistical analysis of data can and are applied 
 b) the quality and confidence of the results including models are  
  properly assessed 
 

General Concepts 
 

1. Random Variable 
 

- a measured variable that takes on a range of possible values which are random ( i.e. lacking 
exact predictability) 

 
Two types of random variables: 
 

a. discrete 
  

Example:   �� = number of ceramic rasching rings per cubic feet of absorption column 
 

b. continuous 
 

Example:   ��= the void fraction per cross section area of the absorption column 

 
2. (Statictical) Event 

 
- an occurence of the random variable taking on some specified values or range of values. 
 

Example:   the number of ceramic rasching rings per cubic feet is greater than 200  ��� � 200	 
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Example:   the void fraction per unit per cross section area is between 0.25 and 0.5 �0.25 � �� � 0.5	 
 

3. Probability 
 
- The likelihood (normalized frequency) for the occurence of an event. 
 

Example:   Pr �0.25 � �� � 0.5	 � 0.25 
 
Special case: When random variable is discrete, then discrete probability is the ratio of the 

[number of cases favorable to an event]  to the [number of all possible cases] 
also known as the frequency of the event. 

( For a list of properties of probabilities, see Appendix 1. ) 

4. Probability Distribution 

- a function ( or mapping ) of events to probabilities 

Motivation: 
 

Using historical data and experience (or assumptions), we want a convenient way to estimate 
or predict probabilities of events 

 
Methods: 

 
a. Using histograms 

o  a grouping of collected data into categorized bins (e.g.\ range of values)  

 

Figure 1. 
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 Pr�1.4 � � � 1.8	 � 0.2105 � 0.1053 � 0.1579 � 0.0526 � 0.5263 

 

( See Appendix 7 for details on using Excel to create histograms.) 
 

b. Using probability density functions ( pdf ) 
 
o a continuous approximation of a frequency histogram 

 

 
 

Figure 2. 
 

Pr�� � � � �	 � � �����	�� 
!  

 
For a list of important probability distributions, see Appendix 2 and 3. 

 
 
o for discrete random variables, the function becomes the probability mass function 

(pmf)  which has relevance only at the discrete points. 
 Pr� � � � 	 � �"���	 
 

 ( Examples of these are given in Appendix 2.)  They are usually represented as a 
curve with dots at the discrete points; or, if the discrete random variables are spread 
evenly, the pmf can be represented by bar-charts.   

 
c. Using cumulative distribution functions (cdf) 

 
o a distribution that yields the probabilities of a one-sided range of random variables 

 #����	 � Pr �� � �	 � � �����	��!
$%  
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o For discrete random variables, the cumulative probabilities are given by 
 Pr�� � �	 �&�"���	'(!  

 
Measures of Central Tendency:  
 

Let ���	 and "��	 be the probability density function and probability mass function, 
respectively, of the population: 

 
a) Population Mean ( “Expected Value of x” ) 

 ) �  � � ���	��%
$%    �*+  #*,-.,/*/0 +�,�*" 1�+.��230 

 
or 

  ) � & � "��	$%('(%   �*+ �.0#+3-3 +�,�*" 1�+.��230  
 

b) Sample Mean ( Average ) �4 �  ∑ �67689,  

 
Measures of Variability 
 

a) Population Variance: 
 :; � � �� < )	;���	��%

$%    �*+ #*,-.,/*/0 +�,�*" 1�+.��230 
 

or 

Area = = �����	��!$%  

a a 
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 :; � & �� < )	; "��	$%('(%   �*+ �.0#+3-3 +�,�*" 1�+.��230  
 

b) Sample Variance: 

 

0; � ∑ ��6 < �4	;7689, < 1  

  

The population standard deviation and sample standard deviation are given by σ and s, 

respectively. 
 
Other Measures: 
 

i. Median: 50% of the population is less than the median point Pr �<∞ � � � �?@A6!7	 � 0.5 
 

ii. The first quartile ( 25
th
 percentile) and third quartile ( 75

th
 percentile ) can be used to 

identify outliers ( see appendix 6 for details ). 
 

iii. Mode: peak points of the probability distribution functions, 
 

 ���� � 0      �,�      �;���; B 0 

 

 
Some Important Properties: 
 

1. The binomial distribution has:   mean: µ = np  and  variance: σ2  
= np(1-p).   

2. As n becomes large, the binomial distribution approaches a normal distribution 

3. The mean of a normal distribution is µ while the standard deviation is σ. 

4. Define a new variable z, known as the standard scores, as 

C � � < ):  

 

If x is normally distributed with mean µ and standard deviation σ,  
 z  will follow a standard normal distribution with mean equal to zero and standard deviation 
equal to one.  

 
5. Let x1, x2, …, xn be n samples taken independently from the same population with a fixed 

probability distribution, then the sum 

D � &�67
689  

 
will approach a normal distribution as n approaches infinity. 

6. In particular, the sample average, i.e. �4 � D/,, will be normally distributed with a mean equal 
to that of the original population. This is also known as the Central limit theorem. 
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7. Another result of the Central limit theorem is that the standard deviation of the distribution of 

the sample averages will be equal to F: √,⁄ I.  (See Appendix 5 for derivation of this fact.) 

8. If n is small (e.g. <20), a correction to the Central limit theorem is to use a t-distribution 
instead, with degree of freedom, v=(n-1), where the t-scores are used instead of z-scores 

- � �4 < )0 √,J  

9. Let Y1, Y2, …, YN be independent N random variables, each following a standard normal 
distribution. Then the sum of squares given by  

K � &L6;M
689  

will follow a Chi-square distribution with the degree of freedom, ν = N .  (For every constraint 
imposed on the N random variables, the degree of freedom is reduced accordingly. For 
instance, if the sum of random variables has to be equal to a fixed number, say 120, then the 
degree of freedom is reduced by 1.) 

 
 

  



7 
 

Application 1:  Generating Confidence Intervals for Sample Means  
 

Main Problem:  
 

- The sample mean �4 is supposed to estimate the population mean µ. This will yield only a 

“point”-estimate, which has a very low probability of being exactly equal to µ. 

- Instead, we want to generate an interval, e.g. ��4 < N,  �P � N	 such that we are confident, within 

a prescribed confidence level, that the real value of µ is inside this interval. 

 
 

Procedure: 
 

Example:  Consider a 10-sample set given by 
 

1.234 1.209 1.213 1.231 1.223 

1.225 1.23 1.22 1.218 1.216 

 
 

1. Determine the value of t-score that would yield the required confidence level based on t-
distribution. 

 

Example: For a confidence level of 95%, we want to find the value of - from the t-

distribution in which the two-tail probability is equal to 5%.  Since , � 10, the 
degree of freedom is 9. Using the Excel function, we find 

 -conTidence interval � TINV�0.05,9	 �  2.2622 
  

2. Calculate sample average �4  and sample standard deviation s. 

Example: (from above data) 

�4 � ∑ �67689, � 1.2219, 0 � `∑ ��6 < �4	;7689, < 1 � 0.008198 

3. Calculate the interval estimate based on t-scores : (Note: the value 0/√, is also known as the 
“standard error”. )  

 - �  �4 < )0 √,J      a     N � ��4 < )	 � -conTidence interval  0√, 

 
Example: (continuing from above) 

N � 2.2622 0.008198√10 � 0.005865 

 
Thus, with 95% confidence, the population mean can be estimated as 
 ) b �1.2219 < 0.005865,   1.2219 � 0.005865	 � �1.2160,   1.2278	 
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Application 2:  Calculating Sample Sizes  
 

Main Problem:  
 

- We want to estimate the population mean µ to within a specified precision. 

- Assuming we have a reasonable idea of the standard deviation σ of the population, we need 
to determine how many samples are needed in order to satisfy the required precision. 

 
Procedure: 
 

Example:  The recipe of a batch process is known to yield products that have a 
standard deviation of 0.02 g/liter of impurities.  
 
We want to determine how many batch samples to measure such that within a 95% 
confidence interval, the measured concentration of impurities will be ±0.015 g/liter of the 
sample mean.  

 
1. Since we have not yet done the actual measurements, we assume that the sample standard 

deviation s is the same as the population standard deviation σ.  This assumption will allow us 

to calculate the critical values based on the t-distribution.  For a 95% confidence interval, 

 - �  �4 < )0 √,J � N: √,J       
a     , � c-conTidence interval  :Nd; � c:Nd;  eTINV�0.05, , < 1	f; 

 

Example:  Based on the given values above, i.e. : � 0.02 g/liter  

and N � 0.015 g/liter, 
 

 , � g0.0200.015h
;  eTINV�0.05, , < 1	f;                       �Eqn 1	 

 
Note that n appears on both sides of the equation. One approach is assume a standard 
normal distribution instead of the t-distribution.  However, this is valid only if the sample 
size is large. A more accurate method is to use computational tools such as an Excel 
spreadsheet to solve the equation.  Build the spreadsheet shown below: 
 

                  
 

Where RHS stands for the right hand side of equation (1). Then obtain the smallest 

value of n (must be integer) such that the value of n-RHS is positive.  As shown below, 

we need n=10 batch samples. 

= ( B1/B2 * 
   TINV(0.05,A5-1 ) )^2 

=A5-B5 
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Application 3:  Hypothesis Testing : Whether Two Sample Means are Significantly 
Different    
 

Main Problem:  
 

- Given two sample groups of size n1 and n2, each yielding sample means �49 and  �4;,  and 

standard deviations, 09 and 0;. 

- Assuming both samples are obtained from the same populations with the same standard 

deviation σ, we want to determine whether the two sample means are significantly different 
(based on a desired confidence level.) 

 
Procedure: 

 
Example:  Two sets of samples of the distillate concentrations were collected one week 

apart, yielding the following calculations: 
 

 k lP m 

Week 1 10 0.922 0.012 

Week 2 20 0.903 0.015 

 
We want to know if the mean of week 2 is significantly different from the mean 
of week 1 using a 99% confidence interval. 

 
1. Set up the null hypothesis Ho and the alternative hypothesis Ha. 

 

Ho �49 � �4; 

Ha �49 n �4; 

 

2. Calculate the critical value of t-distribution needed for a confidence interval of 99% 

confidence interval, with a degree of freedom equal to : ,9 � ,; < 2. 
 

Example:  From our given values, the degree of freedom is 20+10-2=28. With a 99% 
confidence interval, we find: 

  -critical � TINV�0.01,28	 � 2.763 
 

3. Next, calculate a pooled standard deviation given by the formula: 

0o � `�,9 < 1	09; � �,; < 1	0;;,9 � ,; < 2  

 
 Example:  From our given values, we find: 
  

0o � `�9	0.012; � �19	0.015;28  � 0.01410 
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4. Calculate the t-score for the difference of the sample means 
 - � �49 < �4;

0op 1,9 � 1,;
 

Example:  From our given values, and the calculated sp: 

  - � 0.922 < 0.903
0.01410p 110 � 120

� 3.478 

5. Compare t  score with  tcritical. If the t score is beyond the confidence interval, then we reject 

the null hypothesis and accept the alternative hypothesis. 
 

Example:  Since - � -critical, i.e. 3.478>2.763, we reject the null hypothesis and 
conclude that the sample mean of week 2 is significantly different from the 
sample mean of week 1. 

 
Remarks: 

 
a. There are two types of errors that are possible when using hypothesis testing.  Type 1 

error is the error when the null hypothesis was true but was rejected.  Type 2 error occurs 
when the null hypothesis was false but was accepted. 

b. The hypothesis testing method can be used in several other comparisons.  Appendix 4 
lists some of the important cases together with the type of distributions used to determine 
confidence intervals. 

c. The table in Appendix 4 shows two entries when comparing two sampled means.  Entry 8 
considers the case in which the standard deviations of the populations used for each 
sample group are the same (this was discussed in this section).  Entry 9, however, 
considers the case when the standard deviation may have been different for the 
population that yielded the sample means.  In this case, the degree of freedom requires a 
more complicated evaluation that may yield a non-integer result.  When this happens, the 
fractional part is simply dropped. 
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Appendix 1. Properties of Probabilities 

 

 

Let A and B be events. Pr�q|s	 is the conditional probability, i.e. the probability of event 
A on the condition that event B has occurred. 
 
 
1. General relationships: 

1 
Pr� all events 	 �  1 Pr� no events 	 �  0 

2 Pr� not q 	 � 1 < Pr �q	 
3 Pr�q u s	 � Pr�q|s	 Pr�s	 � Pr�s|q	 Pr �q	 
4 Pr�q v s	 � Pr�q	 � Pr�s	 < Pr �q u s	 

 
 

2. Special Cases: 

1 Events A and B are independent 
Pr�q|s 	 � Pr�q	 Pr�s|q	 � Pr�s	 Pr�q u s	 � Pr�q	 Pr �s	 

2 
Events A and B are mutually 

exclusive, i.e. q u s � 0 
Pr�  q v s 	 � Pr�q	 � Pr �s	 

 
 

3. Bayes’ Formula: 

Pr�s|q	 � Pr�q|s	 Pr �s	Pr �q	  
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Appendix 2. Some Discrete Probability Distributions 

 

1. Binomial Distribution 

 
Let n be the number of independent trials, k be the number of successful occurrence and p 
be the probability of success for a single trial, then 
 Pr�� � w | ,, �	 �  ,!w! �, < w	!  �y�1 < �	9$y 

 

 
 
 

Available Excel functions: 
 

BINOMDIST( k, n, p, cum ) 
Binomial probability 
distribution function �0 � w � ,	 

k = number of success 
n = number of trials 
p = probability of single trial 
cum = TRUE (for cumulative) 

and FALSE (for 
probability) 

 
 

2. Poisson Distribution 

Let  k  be the number of successful occurrence in τ  time units, λ be the expected number 
of successful occurrences, i.e. let -4 be the average time for a successful occurrence, then z � {-4 Pr�� � w | z	 � zyw! 3$| 
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Available Excel function: 
 

POISSON( k, λ, cum ) 

Poisson probability 
distribution function � 0 � w, z 	 

k = number of success 

λ = expected number of success 
cum = TRUE (for cumulative) 

and FALSE (for 
probability) 
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Appendix 3. Some Continuous Probability Distributions 

1. Uniform Distribtuion ���	 �  1   }~3+3   0 � � � 1 
 

 
 

2. Normal Distribution ( also known as Gaussian distribution and denoted N( µ,σ )  ) 

���	 � 1:√2�� 3$9;c'$�� d�
 

 

Special Case: standard normal distribution � mean: µ = 0,  standard deviation :σ = 1 

 
Remarks: 

a. The normal distribution function is symmetric around the mean µ. 

b. Available functions in Excel are: 

 

NORMDIST( x, µ, σ, cum ) 

Normal distribution 
(if cum=FALSE, then yield 

normal pdf) 

where, 
x  = random variable 
z  = standard score 

    =  
'$��  

µ  = mean 

σ  = standard deviation 
Pr  = probability 

NORMSDIST( z ) 
Standard normal cumulative 

distribution 

NORMINV( Pr, µ, σ ) 
Inverse normal cumulative 

distribution 

NORMSINV( Pr ) 
Inverse standard normal 
cumulative distribution 
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Example 1: Suppose the random variable x is known to be normally distributed 
with a mean of 3 and standard deviation of 0.6.  Determine Pr�2 �� � 5	. 

 
Solution: 
 

NORMDIST(5, 3, 0.6, TRUE)-NORMDIST(2, 3, 0.6, TRUE) =0.952 
 

Or with C9 � �$��.� � 3.3333  and C; � ;$��.� � <1.6667 

NORMSDIST(3.3333)-NORMSDIST(-1.6667) = 0.952 
 
 

Example 2: Suppose the random variable x is known to be normally distributed, 
determine the mean and standard deviation such that Pr�� � 7	 �0.3 and Pr�� � 10	 � 0.8. 

Solution: C9 = NORMSINV(0.8) = 0.8416 = 
9�$��   ; C; = NORMSINV(0.3) = -0.5244 = 

�$��  

Solving simultaneously for mean and standard deviation, we get c1 0.84161 <0.5244d c):d � c107 d     �      µ = 8.1517 , σ  = 2.1962 

 
 

3. Chi-Square ( χ 2) Distribution  

���	 � g12h
� ;J 1ΓF� 2J I �F� ;J $9I3$� ;J  

 
 
Define the right tail area by: 

 

q���, �	 � � ����; � 	 ��%
!       where ����; � 	 is the �; pdf    

 
 

a 

 Aχ(a,ν) 
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Available Excel functions: 
 

CHIDIST( x, ν ) 
Right-tail probability of a Chi-

square distribution 
where, 

x = random variable 

ν = degree of 
        freedom CHIINV( Pr, ν ) 

Inverse of the right-tail 
probability of a Chi-square 

distribution 

 
4. t – Distribution 

 

���	 � 1√��
Γ ��� � 1	 2J �

ΓF� 2J I �1 � �;� �
$���9	 ;J

 

 

 
 
Available Excel functions: 
 

TDIST( x, ν, 1) 

Right-tail probability of a  
t distribution 

( x is nonnegative ) 
where, 

x = random variable 

ν = degree of 
        freedom 

TDIST( x, ν, 2) 

Two-tail probability of a  
t distribution 

( x is nonnegative ) 

TINV( Pr, ν ) 
Inverse of the two-tail 

probability of a t distribution 

 
Other Important Probability Distributions: 
 

5. Log Normal Distribution 

���	 � 1��√2� 3$
9;g�� �'	$�� h�
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6. Exponential Distribution ( Note: discrete version is a Poisson distribution ) 

���	 � �3$�' 

 
7. Beta Distribution 

 

���	 � Γ�� � �	Γ��	Γ��	 ��$9�1 < �	�$9    ;   Γ�·	 � gamma function 
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8. Gamma Distribution 

���	 � g ��Γ��	h ��$93$�' 

 
9. Weibull Distribution 

���	 � �� g��h� exp g< g��h�h 
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Available functions in Excel: 
 

LOGNORMDIST( x, α, β ) 

Log normal cumulative 
distribution 

( x is nonnegative ) 

where, 
x  = random variable 

α, β, γ  = parameters 
Pr  = probability 
A = lower bound 
B = upper bound 
cum = TRUE( cdf ) or 
           FALSE( pdf ) 

LOGINV( Pr, α, β) 
Inverse log normal 

cumulative distribution 

EXPONDIST( x, γ, cum) 
Exponential distribution 

( x is nonnegative)  

BETADIST( x , α, β, A, B) 
Beta cumulative distribution 

(q � � � s ) 

BETAINV( Pr, α, β, A, B) 
Inverse beta cumulative 

distribution 

GAMMADIST( x, α, β, cum ) 
Gamma distribution 
( x is nonnegative ) 

GAMMAINV( Pr, α, β ) Inverse Gamma distribution 

WEIBULL( x, α, β, cum ) Weibull distribution 
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Appendix 4. Table of Hypothesis Tests 

 

 Test 

Given/Calc 

Statistic Tails Distribution Ho µ σ x
 

s 

1 
x  significantly different 

from  µ 

� �   
σ

µ−x
 

2 

N(0,1) 

 µ=x  

2 
x  significantly lower 

than  µ 
Left µ≥x  

3 
x  significantly higher 

than  µ 
Right µ≤x  

4 
x   significantly 

different from  

µ  ( σ  known ) 

� � �  n
x

σ

µ−
 2 N(0,1) µ=x  

5 
x   significantly 

different from  

µ  ( σ  unknown ) 

�  � � n
s

x µ−
 2 t (n-1) µ=x  

6 

Two sample means 
significantly different 

( σ  same for both ) 

 � �  

21

11

21

nn

xx

+

−

σ
 

2 N(0,1) 21 xx =  

7 

Mean for paired 
comparison of samples, 
xi=yi-zi , is significantly 

nonzero  

  � � n
s

x
 2 t (n-1) 0=µ  

8 21 xx ≠  

( σ  same for both ) 
  � � 

21

11

21

nn
S

xx

+

−
 

with 

( )

2

1

1

21

1

21

−+

−
=

−+=

nn

n
q

sqsqS

 

2 t (n1+n2-2) 21 xx =  

9 21 xx ≠    � � 

2

2
2

1

2
1

21

n

s

n

s

xx

+

−
 

2 

( )



















+

+

−− 11

2
21

2

2
2

1

2
1

nn

t
δδ

δδ
 

with 

k

k
k

n

s
2

=δ  

21 xx =  

10 2
2

2
1 ss >     � 

2
2

2
1

s

s
 Left ( )1,1 21 −− nnF  

2
2

2
1 ss =

 

11 σ≠s     � ( )
2

2

1
σ

s
n −  2 ( )12 −nχ  σ=s  
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Appendix 5.  Some Important Formulas for Means and Variances 
 

1. Let E(x) be the “expected value” of x, with respect to a probability distribution function 

given by p(x), defined by the integral 

¥��	 � � � ���	��%
$%  

2. The expected values of a sum of random variables is the sum of expected values: 

¥�� � ¦	 � § �� � ¦	���	��¦	�¦��%
$%  

� �� ����	��%
$% � ��¦	�¦%

$% � � �� ���	��%
$% � ¦��¦	�¦%

$% � 

� ¥��	 � ¥�¦	 
3. The expected value of a product of independent random variable is the product of 

expected values: 

¥��¦	 � § ��¦	���	��¦	�¦��%
$%  

� �� ����	��%
$% ��� ¦��¦	�¦%

$% � 

� ¥��	¥�¦	 
4. The mean of the population, ), is the expected value of random variable x,  ) � ¥��	 
5. The variance of a random variable x is the expected value of  �� < ¥��		;, i.e. 

��+��	 � :; � ¥ cF� < ¥��	I;d � ¥��� < )	;	 � � �� < )	; ���	��%
$%  

6. The variance of a sum is the sum of variances: 

��+�� � ¦	 �  ¥ cF�� � ¦	 < ¥�� � ¦	I;d � ¥ c¨�� < )'	 � F¦ < )©Iª;d � ¥ c�� < )'	; � 2�� < )'	F¦ < )©I � F¦ < )©I;d � ¥��� < )'	;	 � 2¥�� < )'	¥F¦ < )©I � ¥ cF¦ < )©I;d � ��+��	 � ��+�¦	  
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7. Variance of a scaled random variable, kx is w;��+��	: ��+�w�	 � ¥ cFw� < ¥�w�	I;d � ¥ cFw� < w¥��	I;d � ¥��w� < w)	;	 � ¥�w;�� < )	;	 � w;¥��� < )	;	 � w;��+��	  
8. The expected value of the sample mean is the population mean: 

¥��4	 � ¥ �∑ �67689, � � 1,&¥��6	 � 1,&) � 1, �,)	
7
689 � )7

689  

Thus, the sample mean is an “unbiased” estimator of the population mean. 

9. The variance of sample means is ¬:; ,J ­: 

��+��4	 � ��+ �∑ �67689, � � ��+ �&�6,
7
689 � �&��+ c�6,d 

7
689  

� & 1,; ��+��6	 
7
689 � 1,;&:;7

689 � 1,; �,:;	 
� :; ,J   

10. The expected value of the sample variance is population variance: ¥��6;	 � ¥���6 � ) < )	;	 � ¥���6 < )	; < 2)��6 < )	 � );	 � ¥���6 < )	;	 < 2)¥��6 < )	 � ¥�);	 � :; � ); ¥��4;	 � ¥���4 � ) < )	;	 � ¥���4 < )	; < 2)��4 < )	 � );	 � ¥���4 < )	;	 < 2)¥��4 < )	 � ¥�);	 
� :;, � ); 

0; � ∑ ��6 < �4	;7689, < 1 � 1, < 1�&�6;7
689 < 2�4&�67

689 � , �4;� 

� 1, < 1�&�6;7
689 < , �4;� 

 

¥�0;	 � ¥ ¬ 1, < 1�&�6;7
689 < , �4;�­ � 1, < 1�&¥��6;	7

689 < ,¥� �4;	 � 

� 1, < 1�,�:; � );	 < , �:;, � );�� � :; 

Thus, the sample variance is the “unbiased” estimator of the population variance. 
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Appendix 6. Quartile Method for Determination of Outliers 

    (tbco 10/16/2007) 

Method: 

Let K9 be the first quartile and K�be the third quartile.  

1. Compute the difference, called the inter-quartile range: ®K¯ � K� < K9. 
2.  Then calculate the inner fence: 

Minimum value:  K9 < 1.5 ®K¯ 
Maximum value:  K; � 1.5 ®K¯ 
and the outer fence: 
Minimum value:  K9 < 3 ®K¯ 
Maximum value:  K; � 3 ®K¯ 

3. The values outside inner fence are considered “mild outliers”, while the values 

outside the outer fence are considered as “extreme outliers”. 

Example:  

 
  

=QUARTILE(B3:B24,1) 

=QUARTILE(B3:B24,1) 

 

=G4-G3 

=G3-
1.5*G5 

=G3-
3*G5 

=G4+ 
1.5*G5 

=G4+
3*G5 

=IF(OR(B17<=$G$8,B17>=$H$8),"out","in") 

=IF(OR(B21<=$G$7,B21>=$H$7),"out","in") 
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Appendix 7. Histogram Macro in Excel 

    (tbco 10/17/2007) 

Purpose of histograms: 

To visualize the count or frequency of data inside chosen intervals known as bins. 

Histogram Macro 

Note: We have built a macro for the construction of histograms based on intervals. Excel 
has a built-in function for making histograms but require adjustment of the bar chart to 
obtain standard histograms. 

Downloading 

A zipped version of the file histogram.bas is available for download using the 
link:  www.chem.mtu.edu/~tbco/cm3215/histogram.zip 

Activation 

1. With an open excel worksheet, click [Alt-F11] to open the VBA (visual basic for 

applications) editor. 

2. Click [Ctrl-M] and import the file histogram.bas. 

3. Click [Alt-F11] to return to the Excel worksheet. 

Using the Macro 

1. Make sure data is available in the worksheet. 

2. Invoke the histogram macro using [CTRL-h].( Alternatively, you can select 

[VIEW]����[Macro]����[View Macros…] menu item then select [histogram] and click [Run]. 

3. Follow the instructions prompted by the input boxes: 

a. Data range:   click-drag to select cells. 

b. Minimum bin value: can be less than the minimum data value  

c. Maximum bin value:  can be greater than the maximum data value 

d. Bin interval width:  must be a fraction of the range 

e. Select 1 (Frequency count) or 2(relative frequency) 

f. Cell to store results: row location must be greater than row 2. 

4. Change the graph if desired, e.g. axis titles and range. 
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Example:  

 

 
 

Remarks: 

1. For the results shown, we used the following input: 

a. Cell range:  $A$2:$A$23 

b. Minimum bin value:  1.1 

c. Maximum bin value:  1.4 

d. Interval width:  0.02 

e. Type:   2 

f. Cell to store results:  $D$2 

2. The columns labeled bins, frequency count and relative frequency are histogram 

analysis results. 

3. The columns labeled xbins and yrelative frequency are just used for plotting the 

histogram. 

4. The axis range and titles of the plot were then modified manually. 
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Appendix 8. Normal Quantile Plots 
(tbco 10/18/2007) 

 

Purpose: 

To check whether a data is normally distributed. 
(Remark: histograms of small data sets can be very sensitive to the choice of bin width, 
but cumulative frequency information is more robust.) 

 

Method: 

1. Arrange the data in ascending order: �9 � �; � ° � �7. 

2. Calculate the corresponding quantile: ±6 � �. < 0.5	 ,J . 

3. Determine the normal score zi that would yield this cumulative frequency. C6 � NORMSINV�±6	 
i.e., the inverse standard normal cumulative distribution function of qi. 

4. Plot data versus the normal score, e.g.  zi vs di 

5. If the plot lie close to a line that passes through z=0, then the data is considered close to 

normally distributed. 

Example: 

 
Consider the following data: 

 

3.80 3.70 3.57 3.41 3.58 3.33

3.49 3.56 3.50 3.50 3.40 3.37

3.75 3.51 3.52 3.25 3.60 3.60

3.62 3.51 3.38 3.40 3.42 3.34

3.47 3.61 3.55 3.54 3.20 3.46  
 
Then a spreadsheet could be constructed as follows: 
 

 

=(D2-0.5)/30 

=NORMSINV(E5) 
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and then plot column F vs column c: 
 

 
 
The data fall pretty much on a line, thus we can conclude that the data is normally 
distributed. 
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Appendix 9. Plotting Normal Distribution Curve Using Excel 

(tbco 10/19/2007) 

Purpose: 

To plot a normal distribution curve (probability distribution function) based on the given 
values of mean and standard deviation. 

Procedure: 

1. First set up cells containing mean and standard deviation 

2. Calculate a range of values of the random variable.  For example, you can first evaluate 

the values ranging from three sigma below the mean and three sigma values above the 

mean. 

3. Use the Excel function NORMDIST( x, mean, sd, FALSE)  to calculate the pdf values. 

(Note: the FALSE value is to set the mode to pdf, otherwise it yields cumulative 

frequencies) 

4. Plot the pdf vs. the random variable. 

 
  

=B2-3*B3 

=B2+3*B3 

=NORMDIST(D2,$B$2,$B$3,FALSE) 
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Appendix 10.  Confidence Intervals Using Excel 

(tbc 10/20/2007) 

Purpose: 

Using built-in functions, we can obtain the confidence interval of the population mean based 
on small samples using the t-distribution. 

Method: 

1. Calculate the mean, �4, and standard deviation, 0, using the built-in functions AVERAGE 

and STDEV. 

2. Calculate the standard error (SE), ¶¥ �  0√, 

3. Determine the scaling factor of the standard error that would yield the desired confidence 

level.   

 
For example, for a 95% confidence interval: 

a. Small sample size ( , B 20 ): scaling factor �  -·� � TINV�0.05, , < 1	 
b. Large sample size: scaling factor �  ,·� � NORMSINV�0.025	 

 
4. Evaluate the lower limit and upper limit of the confidence interval, Lower limit �  �4 < �scaling factor	�¶¥	 Upper limit �  �4 � �scaling factor	�¶¥	 

 
5. If desired, plot the mean together with the confidence limits using error bars. 

 
Caution:  

 
The usual convention for error bars is to plot: �4 º ¶¥. This means a 68.3% confidence 
interval based on normal distributions.  For small samples, this leads to even lower 
confidence levels since t-distributions are needed.  However, due to the difficulty of 
obtaining inverse t-distributions in the past (requiring interpolations from table of t-
distribution data), the practice of just using the standard error SE is common and accepted.  
Below, we show an example of plotting the 95% confidence interval in terms of error bars. 
When doing so, please indicate that these are “estimates with 95% confidence intervals”.  
Otherwise, most scientists and statisticians will probably misinterpret your plots.    



31 
 

Example: 
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How error bars were included in the plots above: 

1. Do an x-y (scatter) plot mean vs. temperature. 

2. In the toolbar, select [Chart Tools]����[Layout]����[Error Bars]����[More Error Bars 

Options…] 

    

 
 

3. In the pop-up window, choose the [custom] selection, then click [Specify Value] button. 

For the t-distribution case, we selected the range [$D$9:$D$11] for both positive and 

negative errors values. The error bars should now appear. 
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